
 1

I Introduction

The liberalization and deregulation of the public telecommunication

put the network and service providers in the competitive market
environment. Additionally, a rapid introduction of new multimedia
services is inevitable in this environment in order to occupy the leading
position in the telecommunication world. Therefore, it is strongly
necessary that telecommunication service architecture should be more
scalable, flexible, and interoperable.

Recently, distributed object-oriented technology is adopted in
Intelligent Network (IN) [1]. In intelligent network, Service Switching
Point (SSP) is more difficult to be changed than Service Control Point
(SCP), and the number of SSP is greater than that of SCP. Therefore,
CORBA-based IN implementation is tried from upper layer to lower [2].
Gradually, full CORBA implementation will be achieved. In the future
telecommunication environment, mobile network is also expected to
adopt distributed object-oriented technology for mobility management
and call control [3].

Eventually, legacy TC systems and CORBA-based systems coexist
in transition and interworking of them is indispensable. There are
researches and specifications done by Object Management Group
(OMG), Consortium of Telecommunication Information Networking
Architecture (TINA-C), and Open Group [4, 5, 6]. Specially, OMG
provides specification; “Interwoking between CORBA and TC
system”[5]. Transaction Capabilities/Signaling System No. 7 (TC/SS7)
is used for transmission of signaling messages created by Mobile
Application Part (MAP) and Intelligent Network Application Part
(INAP) for service control. CORBA is being widely used as the
appropriate infrastructure in a value-added telecom network. As a
solution, TC/CORBA gateway performs conversion between CORBA
IDL and TC application part such as INAP and MAP.

Firstly, we develop TC ASN.1 to IDL translator, which translates TC
ASN.1 specifications such as INAP and MAP into IDL. Secondly, we
design and implement generic TC/CORBA gateway. It is based on
interaction translation specification of OMG [5]. The building of generic
TC/CORBA gateway requires TC/SS7 interfaces, TC-user facilities and
generated IDL interfaces by a TC ASN.1 to IDL translator. In addition,
it should support application location, dialog initiation, dialog
maintenance and operation invocation [5].

The Generic TC/CORBA gateway supports time critical feature. In
gateway operation, TC-user object is created by request from remote
service operations. This method makes delay elements. We propose
object pool mechanism to figure it out. This mechanism maintains the
created TC-user objects in an object pool of CORBA domain. After this,
object pool administrator manages binding of proxy objects at a gateway
and TC-user objects in CORBA system. This mechanism enhances the
response time characteristics and scalability. Generic TC/CORBA
gateway can be used as an intermediate solution to the full CORBA
environment with reasonable cost and short time for service
development, deployment, and execution.

In the following section, we present related works, which include
TC/SS7, IN, CORBA, and their integration. In section 3, we analyze
generic TC/CORBA interworking in detail, and then, we describe
implementation methods of generic TC/CORBA gateway and show
some example codes. In section 4, we analyze scalability and
performance with regard to the response time of remote service
operations. And we propose object pool mechanism, which efficiently
manages TC-user objects in CORBA domain. Finally, we end with
conclusion and future works.

II Related Works

1 Transaction Capabilities of SS7

The SS7 is the signaling protocol standardized by the ITU-T[7] to
complete a call between two end-subscribers (either fixed or mobile).
SS7 is the signaling protocol standardized by the ITU-T [7].

INAP
WIN/
CAMEL

IS-41/
MAP

GSM/
MAP

TCP/IP

HLR, VLR, SCP, SMS, etc.

Transport
Layer

TCAP

MTP

Client
Applications

TC Users

X.25
SCCP

Platform Isolation Libraries
Generic TCAP Interface

Figure 1. The TC applications and the TC/SS7 protocol suite

As shown in figure 1, the TC/SS7 protocol suite consists of the
Message Transfer Part (MTP) that provides a connectionless, highly
reliable datagram capability and the Signaling Connection Control Part
(SCCP) that provides additional addressing capabilities. On top of this,
the Transaction Capabilities Application Part (TCAP) is located For
detail information of TCAP, see the reference [7, 8].

TC-based applications are defined as a collection of ASEs, which are
defined as a set of TC functions for a specific purpose and are various
from fixed, (e.g., INAP) [9] to mobile application, (e.g., MAP).

2 Common Object Request Broker Architecture

CORBA is a specification defined by OMG to provide a common
architecture framework for distributed object-oriented applications.
CORBA offers many advantages that make it an attractive choice as a
basic technology that meet the requirements such as location
transparency, in telecommunication area. In addition, CORBA supports
a wide range of services, such as event service, naming service, lifecycle
service, and the forthcoming messaging service [10].

3 CORBA and IN Interworking

There are some early works for interworking between CORBA based

Design and Implementation of Generic TC/CORBA Gateway
Using Object Pool Mechanism

Jeong-Hwan Kim0, Dong-Hee Lee, and Jong-Tae Park
School of Electronics, Kyungpook National University

{jhkim, dhlee}@ain.knu.ac.kr, park@ee.knu.ac.kr

오브젝트 풀 메커니즘을 이용한 지네릭 TC/CORBA 게이트웨이 구현

김 정환0, 이 동희, 박종태
경북대학교 전자공학과

Abstract

Interworking of legacy TC application and CORBA-based one is important to satisfy emerging market demands on the
rapid introduction of new multimedia services and building of scalable, flexible, and interoperable service control
architecture. For this, we develop generic TC/CORBA gateway on interworking between TC and CORBA system. Generic
TC/CORBA gateway can be used for interworking in many fields of telecommunication service control such as INAP,
MAP, other TC-based application parts, and mobility management of IMT-2000. Finally, we propose the object pool
mechanism for efficient management of TC-user objects and it is helpful for enhancement of scalability and reduction of
the response time of remote service operations.

 2

IN applications and legacy IN infrastructure [1, 2, 4]. In particular,
OMG [5] proposes the interworking of CORBA-based IN application
entities (e.g., SCPs) with legacy IN application entities (e.g., SSPs)
through a gateway mechanism. Furthermore, this gateway mechanism
can be used as an adaptation unit for interworking legacy IN and TINA,
which standardized by TINA-C and tries to evolve the IN by proposing
an infrastructure that includes both the control and management.
III The Generic TC/CORBA Gateway

1 Generic TC/CORBA Interworking Architecture

The overall architecture of the generic TC/CORBA gateway is
shown in figure 2.

TC /SS7

L e g a c y
TC User
(e.g. SSP)

TcUse r
Fac to r y
F i nde r

Legac y
TC/SS7
Domain

TC /CORBA
Gateway

CORB A
Domain

Naming
Serv ice

LifeCycle
Service

TC-U s e r

Messag ing
Serv ice

Tc
Reposi toy

Interface
Repository

T cU s e r
Gener ic
Factory

TcPdu
Prov ide r
Factory

TcPdu
Use r

TcPdu
Prov ide r

T C / S S 7

S C P
Factory

S C P

S S P
Proxy

SSP
Factory

O R B

Exchange signaling message
Dialog initiation
Creation o f T C -user object

Figure 2. The generic TC/CORBA interworking architecture

The architecture consists of three divisions; CORBA domain, generic

TC/CORBA gateway, and TC/SS7 domain. TC-user objects are usually
located in CORBA domain. These TC-user interfaces inherited from
TC-user facilities are implemented and executed in this domain. The
generic TC/CORBA gateway consists of TC PDU oriented interface,
which allows proxy objects to be implemented with the consistent
prototype and proxy objects representing legacy TC-user applications.
In TC/SS7 domain, typically legacy TC-based applications send
requests and accept the results via the TC/SS7 protocol suite. For detail
information of each interfaces, see the reference [5]

The generic TC/CORBA gateway supports four major interaction
features as follows: application location (finding), dialog initiation,
dialog maintenance and operation invocation. In general, application
location and dialog initiation are provided by the CORBA naming
service and the life cycle service. Dialog maintenance is provided by the
base interfaces of all TC-user CORBA server objects and operation
invocation is provided by TC-user interfaces, the ORB, the messaging
service and optionally the interface repository and TC repository. TC
facilities at a gateway are inherited from or directly use CORBA basic
services. A CORBA-based TC-user object in CORBA domain
communicates with a proxy object at the gateway. These facilities and
interfaces are summarized in table 1.

2 The Interworking Between Legacy TC Application and CORBA-

based TC-user Object
We describe the interworking procedures of the generic TC/CORBA

gateway using an example of INAP TC-user as shown in figure 3.
(1) A TcPduUser is registered with a TcPduProvider Factory to

request notification of PDUs with a particular (GT) and (AC) received
from the TC/SS7 network.

L e g a c y
T C A P U s e r

(S S P)

T C A P

S C C P

M T P

Legacy TC/SS7
Domain

C O R B A D o m a i n

TcPdu
P r o v i d e r

TcFactory
F inderTcPdu

Provider
Factory

TC-user
Factory
(respond)

TC-user
o b j e c t

(S C P)

TcPdu
U s e r

TC-user
Proxy
(S S P)

G e n e r i c T C / C O R B A G a t e w a y

TC-user
Factory
(request)

1. reg is ter

2. BEGIN
(op1)

3 a. Begin_ ind

3 b. In
voke_ ind

4. resolve

5. create_tc _user

6. create_tc _ u s e r

7. o p 1

8 a. Result_ req8 b. Continue_ req

9. Resul t op1

Figure 3. Interworking procedures

(2) As soon as a BEGIN PDU with a registered GT and AC is arrived

at a gateway from TC/SS7 domain, the TcPduProviderFactory creates a
suitable TcPduProvider object to interact with the TC/SS7 protocol
stack. (3a) The TcPduProvider invokes a begin_ind operation on the
registered TcPduUser object.. (3b) The following invoke_ind operation
contains the remote operation in the received BEGIN PDU. (4) The
TcPduUser resolves the GT and obtains the factory reference through
TcFactoryFinder interface. (6) TCPduUser creates a proxy object
representing the legacy SSP at a gateway via SSP creation factory, and
then the responder interface is created by SCP creation factory. (7)
Operations can be invoked on the created TC-user object using the
CORBA Messaging Service. (8a) A SCP CORBA object returns the
result of operation to a SSP proxy that calls Result_req operation and
(8b) Continue_req operation on the TcPduProvider object at a gateway.

3 Implementation of TC-user in CORBA domain

TC-user applications are various from fixed to mobile, and even the
same TC-user can be implemented in many different ways. In this
section, we describe the common procedure for implementing TC-users.

NewService.asn

NewServiceInitiator NewServiceResponder TcUserFactory

TcSignaling ::
TcUser

TcUser
GenericFactory

Specification Translation

NEW
SERVICE

…
ASN.1 definition

Implementation with C++, Java, etc.

TcUserFactory

INIT:NewService RESP:NewService

NewService .idl

Tc
Repository

Naming
Service

Figure 4. Steps for TC service implementation

This Procedure consists of three stages; TC ASN.1 definition,
specification translation, and IDL implementation as shown in figure 4.

3.1 TC ASN.1 Definition for a New TC Service

It is only necessary in the case of a new service that has not been
defined by ASN.1 constructs and/or Application Service Entities (ASEs).
When a service has been already defined, jump to the next step.

3.2 Specification Translation (ST)

The TC ASN.1 definition for a TC-user is translated into CORBA
IDL through ST according to the rule based on OMG work [5]. One TC
ASN.1 definition is translated into three interfaces, initiator for a proxy
object, responder for a TC-user object, and factory interfaces for
creation of those two objects. Figure 5 shows ST of INAP, which fully
complies with OMG ST rule.

interface Core_INAP_CS1_IP_to_SCP_ ACInitiator

:TcSignaling::TcUser {
… resetTimer(…) raises(…);

};
interface Core_INAP_CS1_IP_to_SCP_ ACResponder

:TcSignaling::TcUser {
… assistRequestInstructions (…) raises(…);

};
interface TcUserFactory:

TcSignaling: :TcUserGenericFactory {
Core_INAP_CS1_IP_to_SCP_ACResponder

create_Core_INAP_CS1_IP_to_SCP_ ACResponder(…)
raises (…);

…
Core_INAP_CS1_IP_to_SCP_ ACInitiator

create_Core_INAP_CS1_IP_to_SCP_ ACInitiator();
};

core-INAP-CS1-IP-to-SCP-AC APPLICATION-CONTEXT
- - dialog initiated by IP with AssistRequestInstructions
INITIATOR CONSUMER OF {
… }

::= { ccitt(0) … version1(0)};
SCF-SRF-activation-of-assist -ASE

::= APPLICATION-SERVICE-ELEMENT
- - consumer is SSF/SRF
CONSUMER INVOKES { assistRequestInstructions }
Timer-ASE ::= APPLICATION-SERVICE-ELEMENT
- - supplier is SCF
SUPPLIER INVOKES { resetTimer }
Specialized-resource-control-ASE

::= APPLICATION-SERVICE-ELEMENT
…

a) translation example of ETSI INAP CS-1

Figure 5. The example of specification translation

3.3 IDL Implementation
Finally, we left object implementations of the generated IDL

interfaces with programming language such as C++, Java, etc. and then,
bind TcUserFactory object and two naming contexts under a specific
GT and AC through naming service. In execution time, a TcUserFactory
must create initiator and responder in order to start association.

 3

IV Object Pool Mechanism for Efficient Management of TC-
user Objects

When implementing a real time application in CORBA domain,

response time should be considered because it affects call setup delay.
In addition, scalability also should be considered to cope with the
unpredictable requests efficiently. For this, OMG proposes two
mechanisms; multiplexing mechanism for dialogs by use of a globally
unique association ID (see the case I in the figure 7) and dialog flow
control (see the case II in the figure 7) [5]. Despite of using OMG’s
mechanisms, there is a basic problem related to object lifecycle. So, a
TC-user object, which has ever instantiated, should be reused for other
requests. Therefore, we suggest object pool mechanism. The object pool
contains a stack of instantiated objects. Once the object pool receives a
call from a remote TC-user, it allows one of object instances in the pool
to cope with the request, and after finishing, the object will be returned
to the pool for later use (see the case III in the figure 7).

For implementing the object pool mechanism, we newly define
PoolAdmin interface that provides basic functions to add, remove an
object, and some additional facilities to manage an object pool as shown
in figure 6. It defines a structure for each entry named PoolEntry that
consists of TC-user object reference and its current state. In addition, it
has an attribute called PoolRepository that consists of several
PoolEntries as a repository of object pool.

struct PoolEntry {
CORBA: :Ob jec t ob j ec t_ id ;
CORBA: :Boo lean s t a tus ;

}
typedef sequence<PoolEnt ry> PoolRepos i tory ;
…
in te r face Poo lAdmin {

readonly a t t r ibute PoolReposi tory pool_reposi tory;
Ob jec t Lookup() r a i s e s (…) ;
void AddEntry(in shor t idx, in PoolEntry object) ra ises(…);
vo id RemoveEnt ry(in shor t idx) ra i ses (…) ;
void Dest roy() ra ises(…) ;

…
}

Figure 6. PoolAdmin interface

The case III in the figure 7 shows the operations of object pool

mechanism. Firstly, it allows a factory to create objects and to register
the references at PoolRepository in PoolAdmin interface. After that,
every registered object should notify its current state, that is, busy or
idle. Once a request from a TC-user is arrived at a gateway, the
PoolAdmin checks whether an object pool associated with the request
has been made or not. And if yes, a PoolAdmin returns one of object
references whose state must be idle. Every request received from the
distributed TC-users is allocated to the corresponding object in the pool
in turn. When the number of TC-users is greater than the number of
objects in the pool, the rest of requests should be buffered within the
tolerable time limit, otherwise an exception would be thrown. In the
case of receiving more than one request from a single TC-user at unit
time interval, a PoolAdmin allows the object to multiplex these requests
by allocating a globally unique association ID.

V Performance of Object Pool Mechanism

1 Response Time

The response time of TC-user consists of time to search for a factory,
time to create a new object, waiting time, and service time. Waiting time
is bounded to the overall system performance rather than object’s, and
service time depends on the capability of each object. Therefore, we
assume that these factors are not varied according to object management
strategies. On the other hand, factory searching time and object creation
time is varied according to the strategies. Compared with factory
searching time at a normal gateway, normal gateway, it takes less time
to lookup a corresponding object pool at a gateway using object pool
mechanism, and the latter doesn’t have to consider the object creation
time. Conclusively, object pool mechanism is helpful to reduce the
response time because it can skip steps for searching a factory as well as
creating a new object through reusing of the created objects in the object
pool.

2 Scalability

It is also necessary that we consider how many objects in a pool
should be created to cope with the overall requests properly. For this,
the average arrival rate of requests, λ and the average service time, E(T)

are should be considered in order to determine the number of object
instances in the pool.

The number of object instances in the pool is
)(TEM ⋅= λ

The above expression is equal to Little’s formula [11] and we
consider CORBA domain where TC-user applications are located as a
queuing system. Thus, M states the number of waiting object instances
in the system. Accordingly, when M object instances in the pool are
created, the number of object instances in the queue will be minimized.
Furthermore, M can be easily adjustable according to the variation of
request arrival rate. Consequently, object pool mechanism can be more
scalable in a system expecting unpredictable requests

SSP
1

O1

O0

O2

OM-1

TC/SS7 CORBA Domain

SSP0

Proxy
SSP
N -1

Proxy
SSP
0

Proxy
SSP1

Factory

IndexState Obj Ref
0 busy …
1 idle …
2 busy …
...
M-1 idle …

Factory

Factory

...

INAP
Object Pool
for INAP

Other
TC-Users

Other
TC-User
objects

SSP
N-1 TC/CORBA

Gateway

PoolAdmin

Reference allocation
Creation of TC-User object
Dialog transaction
Same kind of TC-Users Group

Proxy object
multiplexing dialogs
Proxy object
processing a single dialogs

Si : the i-th tc service user
Oi : the i-th tc-user CORBA
object

Case III

Case II

Case I

Figure 7. Interaction mechanisms using standard, dialog flow control,
object pool technique

VI Conclusion

Based on the OMG work on interworking between CORBA and TC

systems, we have developed generic TC/CORBA gateway, which can be
used to build flexible, scalable, and interoperable service architecture for
service control and management of IN, IMT-2000, and TINA. We
introduced the use of object pool mechanism for the purpose of efficient
management of TC-user objects. This mechanism makes a gateway
more scalable and less response time in that it saves steps for searching
an associated factory and creating a new object through the factory. It
takes a little to lookup one of the instantiated object references in a pool,
but less than time to perform those steps.

We will adopt the upcoming Messaging Service to our
implementation. In addition, the optimized lookup algorithm will be
developed to enhance object pool mechanism. Further more, we will
develop the full CORBA architecture using a gateway interworking
between TC/CORBA, CORBA/CORBA.

References

[1] Subrata Mazumdar and Nilo Mitra, "ROS-to-CORBA Mappings:

First Step towards Intelligent Networking using CORBA," IS&N’97.
[2] Helge Armand Berg and Stephen Brennan, “CORBA and Intelligent

Network(IN) Interworking,” IS&N’98.
[3] Dong-Hee Lee, Moon-Sang Jeong, and Jong-Tae Park, “CORBA-

based Integrated Control and Management for IMT-2000 Global
Roaming Service,” NOMS’2000.

[4] TINA-C, Business Cases and Critical points for TINA-IN Version
1.0, Oct, 1998.

[5] OMG telecom/98-10-03, Revised final RFP on "Interworking
between CORBA and TC Systems.

[6] The Open Group, "Preliminary Specification Inter-Domain
Management: Specification Translation" X/Open Document
Number: P509.

[7] ITU-T Rec. Q.771 , "Signalling System No. 7 - Functional
Description of Transaction Capabilities".

[8] ITU-T Rec. X.880 (1994) | ISO/IEC 13712-1:1995, "Information
technology -Remote Operations: Concepts, model and notation".

[9] ITU-T Rec. Q.1218 “ "Interface Recommendation for Intelligent
Network CS-1", Geneva, 1995.

[10] OMG orbos/98-05-05, CORBA Messaging.
[11] Alberto Leon-Garcia, “Probability and Random Processes for

Electrical Engineering,” ISBN 0-201-12906-X.

